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1 Introduction

In this article, we prove the existence of a set of determining nodes for the Ginzburg-
Landau equations of superconductivity.

The concept of “determining nodes” was first introduced in the context of the
Navier-Stokes equations for viscous incompressible fluids by Foias and TEMAM [8].
In an effort to identify a finite number of parameters controlling a turbulent flow, these
authors showed that there exists a set of points (determining nodes) having the prop-
erty that the values of the velocity vector at these points (nodal values) completely
and exactly determine the large-time asymptotic behavior of the flow. The cardinal-
ity of the set of determining nodes (N) is unknown but can be estimated in terms of
the physical parameters, at least in principle; Jones and Titi [15] give an estimate of
N in terms of the Grashof number, G. It has been conjectured on the basis of the
Takens imbedding theorem [20] that, for dissipative partial differential equations like
the two-dimensional Navier-Stokes equations, /V is in fact independent of the physical
parameters and determined entirely by the dimensionality of the spatial domain. This
conjecture has been verified for the one-dimensional Ginzburg-Landau equation by
Kukavica [18] (N = 2) and for the one-dimensional Kuramoto-Sivashinsky equation

by Foias and Kukavica [7] (N = 4).

In this article, we explore the notion of determining nodes for the Ginzburg-
Landau equations of superconductivity. These equations are more complicated than
the Ginzburg-Landau or amplitude equation commonly considered in the mathemat-
ical community and studied, for example, in [18]. The Ginzburg-Landau equations
of superconductiviy are two coupled partial differential equations for the unknown
(complex-valued) order parameter and (real vector-valued) vector potential; in time-
dependent problems there is a third unknown, the real scalar-valued electric potential,
which is a diagnostic variable somewhat similar to a Lagrange multiplier.

We show that in the time-independent case a solution of the Ginzburg-Landau
equations of superconductivity is determined completely and exactly by a finite num-
ber of nodal values, while in the time-dependent case the large-time asymptotic be-
havior of the solution is determined completely and exactly by the nodal values. In
the latter case, we allow for a time-varying but asymptotically stationary applied
magnetic field; the determining nodes themselves may also vary with time.

The Ginzburg-Landau equations of superconductivity admit vortex solutions,
which are characterized by singularities of the complex order parameter; see [3]. Vor-
tex solutions are of particular interest in solid-state physics, as well as for techno-



logical applications. It is tempting to speculate (but by no means certain) that the
determining nodes are related to the vortices. If so, the dynamics of the Ginzburg-
Landau equations of superconductivity are determined entirely by the dynamics of the
vortices—a significant reduction of dimensionality. Important results in this direction
were obtained recently by Jerrard [14].

The remainder of this article consists of four sections. In Section 2 we give
the classical formulation of the Ginzburg-Landau equations of superconductivity, in
Section 3 the functional formulation in a Hilbert space. Section 4 contains some
auxiliary estimates of the size of a function in terms of its values on a finite point set.
In Section 5 we present our results on determining nodes.

2 Ginzburg-Landau Equations

In this section we present the classical formulation of the Ginzburg-Landau equations
of superconductivity; see [10, 1, 4, 22]. We use the symbol  to denote the region
occupied by the superconducting material, assuming that ) is an open bounded subset

of R" (n = 2,3) with boundary 99 of class C'™'.

2.1 Time-Independent Equations

The state of a superconductor is described by a complex-valued order parameter
and a real vector-valued vector potential A. Identifying the complex plane with R?
in the usual way, we have ¢ :  — R? and A : @ — R”. An equilibrium state
corresponds to a critical point of the Helmholtz free-energy functional,
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Here,  is the (dimensionless) Ginzburg-Landau parameter, which is the ratio of the
characteristic length scales for the vector potential and the order parameter. The
function v is defined on 99, and y(z) > 0 for & € 9. The other symbols have their
usual meaning: V = grad, Vx = curl, V- = div, and V? = V.V = A; i is the

imaginary unit, and the superscript * denotes complex conjugation. The vector H



represents the applied magnetic field; it 1s a given function of position, which takes
its values in R".

A critical point of F = E[¢, A] is a solution of the boundary-value problem

. 2
—<£V+A) ¢+(1—|¢|2)¢:0 in Q, (2.2)
—-VXxVXxA+J,+VxH=0 inQ, (2.3)
n-(£V—|—A)¢—|—’yi¢:0 and nx(VxA—-H)=0 onJdQ. (2.4)
KR KR

Here, m is the local outer unit normal to 9. The vector J, is the supercurrent
density, which is a nonlinear function of ¢» and A,

T T A) = 5 (V0 - oV — oA = —Re [y (SV 4 4) ] (25)

Equations (2.2)—(2.4) are the Ginzburg-Landau (GL) equations of superconduc-
tivity. They embody, in a most simple way, the macroscopic quantum-mechanical
nature of the superconducting state. The trivial solution, » = 0 and V x A = H,
represents the normal state, where all superconducting properties have been lost.
Note the identities

(v a) p= LA 2wy A= LeveA) Al 20
and

_VxVxA=AA—V(V-A). (2.7)

The GL equations are invariant under a gauge transformation,
Gy (Y, A) — (;/)emx, A+ Vx) : (2.8)

For the present investigation we adopt the London gauge [22, Chapter 4], where any
solution (¢, A) of the GL equations satisfies the constraints

V-A=0 inQ, n-A=0 on 0. (2.9)
Under these constraints, Eqs. (2.2)—(2.4) reduce to

1 2 .
— A = (V) A = |AP + (1= [¢F) ¢ in (2.10)
VXxVxA=J,+VxH and V-A=0 inQ, (2.11)
n-Vy+yp =0, n-A=0, nx(VxA—-—H)=0 on JdQ. (2.12)

Henceforth, we refer to the system of Eqgs. (2.10)—(2.12) as the “gauged GL equations.”
This system will be the starting point for the functional formulation in Section 3.2.
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2.2 Time-Dependent Equations

A generalization of the GL. equations to the time-dependent case was first proposed
by SCHMID [19] and subsequenly validated by GOR'KOV and ELIASHBERG [12] in the
context of the microscopic Bardeen-Cooper-Schrieffer (BCS) theory of superconduc-
tivity. Because of gauge invariance, the generalization is nontrivial. In addition to the
order parameter and the vector potential, a third variable is needed to complete the
description of the physical state of the system in a manner consistent with the gauge
invariance. This is the electric or scalar potential ¢, a real scalar-valued function of
position and time. It is a diagnostic variable, as opposed to the prognostic variables
Y and A. The evolution of ) and A is described by the equations

o) o == (594 4) wa (1= P) o 0 0o, 213)

aa_’;‘+v¢:—vaXA+Js+VxH in € % (0, 00), (2.14)

n-<£V—|—A)@ZJ—I—£’ﬂ/}:O and nXx(VxA—H)=0 on dQx(0,00). (2.15)
K K

The parameter n measures the ratio of the relaxation times for the vector potential
and the order parameter. Equations (2.13)—(2.15), together with the expression (2.5)
for J s, are the time-dependent Ginzburg-Landau (TDGL) equations of superconduc-
tivity.

The TDGL equations are invariant under a gauge transformation
Gyt (0, A, 0) > (™ A+ Vx,6— dix). (2.16)

In the present investigation we adopt the generalized Lorentz or “¢ = —w(V - A)”
(w > 0) gauge, where any solution (¢, A, ¢) of the TDGL equations satisfies the
constraints

d+w(V-A)=0 in Q x (0,00), n-A=0 on dQ x(0,00). (2.17)

Clearly, [ & dz = 0 at all times. The “¢ = —w(V - A)” gauge generalizes the classical
Lorentz gauge (w = 1) and reduces to the zero-electric potential (¢ = 0) as w — 0 [5].

Under the constraints (2.17), the TDGL equations (2.13)—(2.15) reduce to a
system of equations for ¢) and A,

oy

N = - (év + A)2¢ +inrod (V- A)+ (1= ) ¢ in Qx (0,00),  (2.18)
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0A
W:—VXVXA—I—MV(V-A)—I—JS—I—VXH in 2 x (0,00), (2.19)

n-Vy4+yp=0, n-A=0, nx(VxA—-—H)=0 ondQx(0,00). (2.20)

The system of Eqs. (2.18)—(2.20) is supplemented by a set of initial data, which may
assume the form

=19 and A=Ay on Q x{0}. (2.21)

Henceforth, we use the term “gauged TDGL equations” to refer to the system of
Eqgs. (2.18)—(2.20). This system will be the starting point for the functional formula-
tion in Section 3.3.

The gauged TDGL equations generate a dynamical process [6]. If the applied
magnetic field is time independent, the dynamical process is a dynamical system [6,
21]. If the applied magnetic field is asymptotically stationary, the dynamical process
is asymptotically autonomous and approaches a dynamical system; in this case, the
omega-limit set of the dynamical process coincides with the attractor of the dynamical
system [17]. Finally, any solution of the TDGL equation in the “¢ = —w(V - A)”
gauge that is gauge equivalent with a stationary physical state tends to a solution of
the GL equations in the “V - A = 0”7 London gauge as time goes to infinity [21, 16].
These notions will be made more precise in Section 3.

3 Functional Formulation

In this section we rewrite the Ginzburg-Landau equations in functional form.

3.1 Definitions and Notation

We begin with a summary of our notational conventions. Throughout the following
analysis, @ C R" (n = 2 or n = 3), Q is bounded, and 99 is of class C''. The
function v : 9Q — R is Lipschitz continuous, with v(x) > 0 for all + € 9Q. The
symbol C' denotes a generic positive constant, not necessarily the same at different
occurrences; in general, these constants depend on the parameters of the problem (7,
n, k, Q, and H), but we do not indicate this dependence explicitly.

All Banach spaces are real; the (real) dual of a Banach space X is denoted by X".
The Banach spaces in this investigation are the standard ones [2, 13]: the Lebesgue
spaces LP(Q) for 1 < p < oo, with norm || ||z»; the Sobolev spaces H™ () = W™2(Q)



for nonnegative integer m, with norm || - || gm; the fractional Sobolev spaces H*({) =
W#2(Q) for noninteger s, with norm ||-|| <; and the spaces C*(Q), for v > 0, v = m+A\
with 0 < A < 1, of m times continuously differentiable functions on the closure of €,
whose mth-order derivatives satisfy a Holder condition with exponent A if v is not an
integer, with norm ||-||cv». The definitions extend to spaces of vector-valued functions
in the usual way. Complex-valued functions are interpreted as vector-valued functions
with two real components.

Because the regularity requirements for the order parameter ¥ and the vector
potential A are the same, we use the notation X = X? x X" for any Banach space
X of real-valued functions defined on €. Thus, X? and X" are the underlying spaces
for ¢» and A, respectively. The basic framework for the functional analysis of the
Ginzburg-Landau equations is the Cartesian product

MU = (@) < [ ()]
for some a € (%, 1). This space is continuously imbedded in H' N L.

Functions of space and time defined on € x [0, T'], for some T' > 0, are considered
as mappings from the time domain [0,7] into a Banach space X = (X, - ||x) of
functions on the spatial domain € and may be considered as elements of L?(0,7"; X)
for 1 <p < oo, or H*(0,T; X) for nonnegative s, or C*([0,7T]; X) for v > 0.

A solution of the gauged GL equations is a function (¢, A) € H'*t*, for some
o € (3,1), which satisfies Egs. (2.2)=(2.4) and the constraint (2.9) in the sense of
distributions.

A solution of the gauged TDGL equations on the interval [0, 7], for some T > 0,
is a function (¢, A) € C ([0, T]; H'T*), with values (¢, A)(t) = (¥(¢), A(t)) € H'*T,
for some a € (3, 1), which satisfies Eqs. (2.18)~(2.20) in the sense of distributions for
each t € (0,7).

3.2 Time-Independent Case

The functional formulation of the gauged GL equations requires the homogenization
of the boundary conditions (2.12).

Assume H € [L*(Q)]". Let Ag be the (unique) minimizer of the convex
quadratic form J = J[A],

J[A] = /Q IV x A — H|dz (3.1)
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on the domain
DJ)={Ae[H()]": V-A=0inQ, n-A=0ondN}. (3.2)
The vector Ag is a weak solution of the boundary-value problem
~VXxVXxAg+VxH=0 and V-Ag=0 inQ, (3.3)

n-Ap=0 and nx(VxAg—H)=0 on 0. (3.4)

The mapping H — Ag is linear and continuous from [H?(Q)]" to [H'*?(Q)]", for
0 <6 <1; see [6, Lemma 4].

Given Ay, we introduce the reduced vector potential A’,
A = A - Ay, (3.5)

and reformulate the gauged GL equations in terms of v and A’,

1 21 .
Law = 20 (A A = A+ AP (- ) e (36)
VXVXA':%(¢*v¢—¢v¢*)—|¢|2(A’+AH) and V-A'=0 inQ, (3.7)
ik
n-Vi+yp=0, n-A'=0, nxVxA =0 ond. (3.8)

The boundary conditions (3.8) are homogeneous.

The abstract analog of the system of Eqs. (3.6)—(3.8) is a functional equation in
L? for the vector u = (i, A'),

Au = F(u), ueDA), (3.9)

where A is the linear self-adjoint operator associated with the quadratic form ) =

Q[u]7

_ 1 2 /2] / @), o
Q= [ | IVl +19 < A dot [ T pfdote),  (3.10)
on the domain
DQ)=DAY) ={u=,A)eH : V-A'=0inQ,n-A =0ond0N}, (3.11)
and F is a nonlinear function, which depends parametrically on Ag,

(Vi) - (A" + An) — oA+ Aul” + (1 - [¢[),

21
K

Flu) = F(u, A) = (



5= (60— 6V0) — [0F(A”+ An) ). (3.12)

The equation Au = f, with f = (¢, F) a given element of L2, is equivalent with two
separated boundary-value problems for 1) and A’,

1 .
—;A;/}chm Q, n-Vi+vy=0on 0d9, (3.13)
VxVxA'=F and V-A'"=0 inQ, (3.14)
n-A'=0 and nx(VxA)=0 ondQ. (3.15)

Boundary-value problems of this type have been studied by GEORGEScU [9]. From
his results we infer that D(A) is a closed linear subspace of H?. Furthermore, A is
positive definite in £?, because () is nonnegative and Q[¢, A’ + ¢||¢]|3, is coercive
on H', for any positive constant ¢ [11, Chapter I, Eq. (5.45)]. The fractional powers
A? are therefore well defined for all real §: A? is unbounded for § > 0; see [13,

Section 1.4]. Interpolation theory shows that D(A’) is a closed linear subspace of
H* for all 0 € (0,1); see [2, Chapter 1V].

A solution u = (¢, A") of the functional equation (3.9) defines a solution (), A) =
(¢, A"+ Ag) of the gauged GL equations. Notice, however, that even though w is an
element of the space H?, we may not conclude that (¢, A) is in H2. If H € [H*(Q)]"
for some o € (3,1), we only have Ay € [H'**(Q)]", so (¢, A) € H'*T.

3.3 Time-Dependent Case

The procedure for the gauged TDGL equations is similar. First, we homogenize the
boundary conditions by introducing, at each instant ¢, the applied vector potential
Amny as in Eq. (3.1). In general, Ay varies with time, An(t) = Apn) for t > 0. The
mapping H (t) — Ag(t) is linear, time independent, and continuous from [H?(Q)]"
to [H*9(Q)]", for 0 < # < 1. Furthermore, 9; Ay = Asn.

Given Ay(t) for each ¢t > 0, we introduce the reduced vector potential as in
Eq. (3.5) and reformulate the gauged TDGL equations in terms of 1) and A’,

) i i
020~ Law= 2wy (A4 Aw) - L eV 4)
—|A" + Al + (1= [9[) ¢ in Qx (0,00), (3.16)
aé;x' FVXVxA —wY(V-A)= i (Y*V — p V)
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—[[(A" + An) — ag% in € x (0,00), (3.17)

n-V+yp =0, n-A'=0, nxVxA =0 ondQx(0,o0). (3.18)

In addition, we have the initial conditions

=1 and A'= A;— Au(0) on Q x {0}. (3.19)

The abstract analog of the system of Eqs. (3.16)—(3.19) is an initial-value problem
in £? for the vector u = (¢, A"),

% + Au = F(t,u(t)) fort >0, u(0)= uo, (3.20)

where A is the linear self-adjoint operator associated with the quadratic form ) =

Q[u]7

1 T
Qu] = /Q [W|V¢|2 +w(V- A 4|V x A’|2] dx + /ag ?7;2)|¢|2d0(x), (3.21)
on the domain
D(Q)=DAY) ={u=(,A)eH : n- A =0on 00} (3.22)

and F is a nonlinear function of u, which depends explicitly on ¢ through the applied
vector potential Ay,

F(t,u) = F(t,, A/) = (% [—%(V;/}) . (A/ + An)
L0 (V- A A ARl (1 ]
i 67V = 650) — A+ Aw) - 208 (3.23)

The initial data in Eq. (3.20) are ug = (¢o, Ay) = (¢, Ao — Au(0)).

The equation Au = f, where f = (¢, F) is a given element in £?, is equivalent
with two separated boundary-value problems,

1
——AY=pinQ, n-Vi4y=0ondQ, (3.24)

nk
VxVxA—wV(V-A)=F inQ, (3.25)
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n-A'=0 and nx(VxA)=0 ondQ. (3.26)

The operator A has the same properties as in the time-independent case: D(A) is a
closed linear subspace of H?, A is positive definite in £2, the fractional powers A’ are

well defined for all real 8, and D(A?) is a closed linear subspace of H*’ for all € (0, 1).

Furthermore, —A is the generator of a holomorphic semigroup {e™* : ¢ > 0} in L2

A mild solution of the intial-value problem (3.20) on an interval [0,7] is a con-
tinuous function u : [0, T] — H'*?, for some a € (%, 1), that satisfies the equation

¢
u(t) = e Mg —I—/ e A=) Fs u(s))ds for 0 <t <T. (3.27)
0

A mild solution u = (¥, A’) of Eq. (3.20) defines a solution (¢, A) = (¢, A"+ An) of
the gauged TDGL equations.

It H € L>([0,T]; [H()]") nH*([0, T); [L*(2)]") for some T > 0 and a € (1, 1),
then the initial-value problem (3.20) has a unique mild solution v = (¢», A") on [0, T
for any initial data uy € D(AN+)/2) [6, Theorem 1]. The mild solutions of Eq. (3.20)
generate a dynamical process U = {U(l,5) : 0 < s <t < T} on D(AIT)/2) by the
definition

u(t) =Ul(t,s)u(s), 0<s<t<T; (3.28)
see [6, Corollary 2]. The process is such that u(t) € D(A) for any ¢ > 0. A solution
u = (¢, A’) of Eq. (3.20) defines a solution (i), A) = (¢, A" + Am) of the gauged
TDGL equations.

Two cases deserve special mention. First, if the applied magnetic field is time
independent, the dynamical process U is, in fact, a dynamical system [6, Theorem 3.
This dynamical system, S = {S(¢) : t > 0}, is related to the dynamical process U by
the identity

Sit—s)=U(t,s), t>s>0. (3.29)
Second, if the applied magnetic field varies with time but is asymptotically sta-
tionary, the dynamical process U is asymptotically autonomous [17, Corollary 1].
This case arises if H € L°°([0,00);[H*'(Q)]") for some o/ € (a,1) and 0, H €
[LY([0, 00); [L2(Q)]™) N [L*(]0, 00); [L*(2)]™). Then lim,., H(t) exists in [H*(Q)]",
defining the element H., € [H*(Q)]",

H., = lim H(t). (3.30)

The solution of the initial-value problem (3.20) can be compared, in the limit of large
time, with the solution of the autonomous problem

% + Au = Foo(u(t)), t>0; u(0)=uo, (3.31)

12



where F..(u) is defined by the same expression (3.23), with Ag replaced by An.
(and 0;Ag by 0). This autonomous problem defines a dynamical system S., on
D(A+2)/2), The orbit of each uy € D(AM+*)/2) under the dynamical process U(s +
t,s) (s fixed, s > 0) and under the limiting dynamical system S, (), ¢ > 0, has
compact closure in H't, and the omega-limit set of each uy € D(AM+*)/2) under
U(t + s,s) (s fixed, s > 0) is a nonempty compact connected set of divergence-free
equilibria for S., [17, Theorem 2].

4 Auxiliary Estimates

In this section we present some auxiliary estimates of the size of a function in terms
of its values on a finite point set in the domain.

Let N be a fixed integer, and let £ be a finite point set in (2,
E={r;€Q:5=1,..., N}. (4.1)
The distance from a point = €  to £ is
dist(2;€) = min{|a —x;|:j=1,..., N}. (4.2)
The mapping @ +— dist(x; €) defines a continuous function in €, whose supremum,
d = dgo(€) = sup{dist(a; &) : x € Q}, (4.3)

measures how well the set & “covers” the domain ): the smaller the d, the better

the coverage of . The number d is positive, and there is a point zo € Q such that
dist(xo; €) = d.

Theorem 4.1 Let 0 be fized, 8 € (%, %) There exists a positive constant C' such that,
for any u € H'*Y,
u@)] < Jule + Cd P ullyro, 7 €D, (4.4

and

lullasae < C (lul*ullyee + dO7D 2 ullyase) . we W (45)

where |ule = max{|u(x;)| : x; € E}.

13



Proof. Since n = 2 or n = 3, the space H'*?() is continuously imbedded in the
Holder space C'~1/2(Q). Hence, there exists a constant C' such that

[u(e) = u(y)| < Cllullyasele —y™'12,

for all x,y € Q. Given any = € Q, we can find a point x; € £ such that | — ;| =
dist(a; €). Taking y = x;, we conclude that

[u(e)] < Jula;)| + C(dist(a; €))7 [ullpse.
The estimate (4.4) follows if we replace the upper bound by its supremum.

To prove the estimate (4.5), we start from the interpolation inequality

[ullzgasorre < Cllull e lullie;

see, for example, [13, Theorem 1.4.4 and Exercise 5]. Because 2 is bounded, it follows
immediately from the estimate (4.4) that

HUHE2 S C (|u|g + de_l/zHuHHHe) 5 u € HH_e,

Applying the elementary inequality (a + b)'/? < a'/? 4+ /2, we obtain the inequal-
ity (4.5). 1

In time-dependent problems, we will allow for the possibility that the points of
& change with time,

E)y={x;(t)eQ:y=1,2,... ,N}, t>0. (4.6)

(Of course, the results remain true if € is time independent.) The estimate (4.5)
extends in an obvious way. For any u € L>([0,c0); H'*?) and any 7 > 0,

() sorrs < C (Jul2 )55 + D2 ub)lppee) . 27 (4.7)
where
|ule,r = sup{max{|u(z;(t),t)| : 2;(t) € E(t)} : t = 7}
and

d,; = sup{dist(z,E(t)) : (x,t) € Q x [r,00)}.
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5 Results

In this section we present our results. We show how and in what sense a solution of
the Ginzburg-Landau equations is, at least in principle, determined completely and
exactly by its values on a finite point set. The qualifier “in principle” refers to the
fact that 2 must be covered sufficiently well by the point set, but we do not have an
estimate of the cardinality of the point set in terms of the parameters of the problem.

5.1 Time-Independent Case

Throughout this section we assume that H satsfies the hypothesis
H e [H*(Q)]" for some a € (3,1). (5.1)

The vector Ag is defined by the quadratic form (3.1) on the domain (3.2), Ag €
[H'*T(Q)]". The linear self-adjoint operator A is defined by the quadratic form (3.10)
on the domain (3.11). Any vector u = (¢», A") € D(A) that satisfies Eq. (3.9) defines
a solution (v, A) = (¢, A" + An) of the gauged GL equations. We recall that D(A)
is a closed linear subspace of H*. Hence, while u is actually an element of H?, (¢, A)
is only in H*T,

Lemma 5.1 Let Bg be the ball of radius R (R > 0) centered at the origin in H'T.
Let (1, A1), (2, As) € Br be two solutions of the gauged GL equations such that
uy = (1, A1 — An) and uy = (2, Ay — An) belong to D(A) and satisfy Fq. (3.9).
Then the difference uw = (Y1, A1) — (¢q, Az) belongs to D(A) and satisfies the norm
inequality

lellze < Cllulla, (5.2)

for some positive constant C' that depends on R.
Proof. Let ¢ = ¢y — ¢y and A = Ay — As, so u = (¢, A). Then
u = (1, A1) — (2, Ag) = (Y1, Ay — An) — (Y2, Ay — AH) = Uy — Uy,
so u € D(A). A straightforward calculation shows that Auw is a linear function of u,
Au = F(ur) — Fluz) = B(¢1, Ars bz, Ao u, (5.3)
where B depends quadratically on 1, Ay, ¥, and As,

By, Ar;ba, Ag)u = (3,0)
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o (20Ar- V0 + (V) - AL (V)6 = (V45 + 0370 — $a007])
— (JALPY + 2 Ar + Ag) - A+ (J1* + )0 + rtath”,

AT + ) + [t A) . (5.4)

[N

Because

[ullre = [[Aulle2 = [|B(¢1, Axs 2, As) ul| 2,

the inequality (5.2) follows if we can show that the operator norm of B : H' — £? is
bounded.

Take any u = (¢, A) € H'. Then, trivially,
12, 0)[ 2 < [[ulle> < Cllulle,

for some positive constant C'. Next, we estimate the terms in (5.4) that depend
linearly on ¢, Ay, ¥y, and A,. Using the triangle inequality and Holder’s inequality
for integrals, we have

[ AL Vb + (Vibs) - Al e < [|Aal[p [V [[2 + [IVi)a| o ]| All -

For a € (1,1), H'**(Q) is continuously imbedded in L**(), so

;
[A1][Le < CllAx|lgse < (41, Ar)Jgr+a.

Also, H(9) is continuously imbedded in L¥(Q), so

[Vibe|le < Cl[Viba|[e < Cllibe|[mite < Cf(¥2, A2) |20+

Therefore,
[A1- VY + (Vih) - Al < OVl + | Allze)

for some constant C' that depends on R. But |V#||p2 < |||z and H* () is contin-
uously imbedded in L5(f2), so

[ AL - Vo + (Viba) - Al < C ([l + [[Allg) < Cllulle
Similarly,

(Vi)™ = (VYD) + 3V — o VT 2 < 2([[Vebalzel[@llze + 1l [Vl 22)
< C(lollze +1VEllze) < Cllulfzer
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The remaining terms in Eq. (5.4) depend quadratically on ¢, Ay, ¥y, and Ay. We
estimate each of them separately. For example, using the triangle inequality, Holder’s
inequality, and the continuous imbedding of H'*t*(Q) in L°(2), we have

[[A1]*0 4 a( Ay + As) - A2 < || AL|[T6 |10l e + |12l re (| AL e + [[A2]lze) | Al e

< C (1Asllinsalllizs + allree (| Adlmse + || Aallmree) | A e)
< C([¥lls + [ Allze)

for some positive constant C' that depends on R. But H*(f) is continuously imbedded
in L5(9), so

AL + 2(Ar + Az) - Allze < Cllulle.
Similarly,

[(so1|* + [02*)0 + rpatr™|[ 22 < Clluffpn
and

[ AL (7Y + a0”) + |2l Al 12 < Cllullso.

Combining the various estimates, we conclude that the linear operator B : H' — £*

is indeed bounded. 1

Theorem 5.1 Let Bg be the ball of radius R (R > 0) centered at the origin in H'T.
Let (1, A1), (2, As) € Br be two solutions of the gauged GL equations such that
uy = (1, A1 — An) and uy = (2, Ay — An) belong to D(A) and satisfy Fq. (3.9).
Let E={x; € Q:5=1,...,N} be a finite point set in Q whose density d = dgo(E)
is defined in Fq. (4.3).

There exists a positive number dg such that, if d < dg and

(77/)1,141)(1']‘) = (¢27A2)(x])7 .] = 17 s 7N7 (55)
then
(U1, Ar)(x) = (2, Az)(2), €. (5.6)

Proof. Let ¢ = ¢y — ¢y and A = A; — A,, and define u = (¢, A). Then u(x;) =0
for all #; € €. Furthermore, as shown in Lemma 5.1, u € D(A) and |Jullz2 < Cl|ul|:
for some positive constant C'.

If Eq. (5.5) is satisfied, we have |uls = max{|u(z;)| : v; € £} = 0, and the
inequality (4.5), with @ = 1, reduces to |[ullzn < Cd"/*||ul/y2. Combining the two
norm inequalities, we conclude that there exists a positive constant C' such that

|z < CdY || (5.7)
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Given this constant C', we fix dg < C~%; such a choice is certainly possible and can
be made a priori. Then C'd'/* < 1 whenever d < §,. But then the inequality (5.7)
cannot be satisfied unless ||u||zz = 0. Hence, if d < dg, it must be the case that « = 0

in © and, therefore, (¢1, A1)(x) = (¢q, Az)(x) for all x € Q. 1

Theorem 5.1 implies that a solution of the gauged GL equations is determined
completely and exactly in all of ) by its values on a finite point set &, provided
E covers () sufficiently well. This property explains why the points of £ are called
determining nodes. The values of the solution at the determining nodes are its nodal
values.

5.2 Time-Dependent Case

Next, we consider the time-dependent case. Throughout this section we assume that
H satsfies the hypothesis

H ¢ 17°([0,00); [H*()])") N H'([0,00); [L*(R)]") for some o € (%, 1). (5.8)

For each ¢t > 0, the vector Ag(t) = Amn( is defined by the quadratic form (3.1)
on the domain (3.2), Au(t) € [H'™(Q)]". The linear self-adjoint operator A is
defined by the quadratic form (3.21) on the domain (3.22). Any vector u = (¢, A") €
C([0, 00); H'+*) which satisfies Eq. (3.20) for some ug € D(AI+)/2) defines a solution
(v, A) = (¢, A" + Ag) of the gauged TDGL equations. We recall that D(A) is a
closed linear subspace of H?. Hence, while u(t) is actually an element of H? for all

t >0, (s, A)(t) is only in H"*t.

Lemma 5.2 Let (11, A1) and (12, As) be two solutions of the gauged TDGL equa-
tions, such that uy = (1, A1 — Anu) and uy = (Yq, Ay — An) satisfy Fq. (3.20), and
let u = (Y1, A1) — (2, As). Then u(t) € D(A) for all t >0, and

d
g lelie + vllullbe < Cllullia, >0, (5.9)

for some positive constants v and C.

Proof. Let ¢ = ¢y — ¢y and A = Ay — Ay, s0 u = (¢, A). Then u = uy — ua,
so u(t) € D(A) for all t > 0. A straightforward calculation shows that u satisfies a
linear differential equation,

i—j + Au = F(t, () = F(t us(t)) = Blen(t), As(£); ¥a(t), As(t) u, ¢ >0, (5.10)
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where B depends quadratically on its arguments (we omit the argument ¢),

B, Ay, Ag)u = %;@,o)

IR

F (211 (004 (T A1+ 10— ) [T+ A0 4 0a(7 - 4,

(V)™ = (Vi + 03V — 997

[N

- (% AP0+ o Ar + A) - A ([P + [0a)e + drog”]
AL (079 + at™) + [12|*A) . (5.11)

Choosing any ¢ > 0, we take the L£*-inner product of both sides of the differential
equation (5.10) with Au. The result is a scalar differential equation,

1d
55]@“%1 + ||lull3e = (Bu, Au), t>0. (5.12)

We estimate the quantity in the right member, for each ¢ > 0, as follows.
We start with the trivial estimates
(Bu, Au)es| < |1Bullcall Auller < ClBull el
We claim that the operator norm of B : H! — £? is bounded.

The proof of the claim proceeds along the same lines as the corresponding proof
in the time-independent case. The expression (5.11) has the same structure as the
corresponding expression (5.4); the one additional term is estimated like all the others,

1V - Auy + 4oV - Al < IV - Aullislleolle + ol |V - Allge

< [[Adl[meall$llee + [lballmiea | All g < Cllelia,

for some constant C. Because the orbit of any initial value in D(A!+%)/2) has compact
closure in H'*?, the constants C' can be fixed independently of ¢.

Consequently,
|(Bu, Au) o] < Clluflp|lullae < ellullze + Cle)lullfn, >0,

for any ¢ > 0. Fixing ¢ in the interval (0,1), we absorb the term e|ul3, in the left
member of Eq. (5.12) and let v = 2(1 — ). The inequality (5.9) follows. 1
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The following theorem shows that, in the limit of large time, the asymptotic
behavior of a solution of the gauged TDGL equations is determined completely and
exactly by its asymptotic behavior on a sufficiently dense, possibly varying, finite
point set.

Theorem 5.2 Let (¢1, Ay) and (12, As) be two solutions of the gauged TDGL equa-
tions, such that uy = (1, A1 — An) and uy = (2, Ay — An) satisfy Eq. (3.20). Let
{E(t) : t > 0} be a family of finite point sets E(t) = {a;(t) € Q:j=1,... ,N} in Q,
whose density do(E(1)) is defined in Fq.(4.3).

There exists a positive number &, such that, if limsup,_, . do(E(1)) < & and

tliglo |(77/)1,A1)($]‘(t),t) - (¢27A2)(x](t)7t)| = 07 .] = 17 s 7N7 (513)

then
lim (61, A1)(0) — (2 Az)(D)llra = 0 (5.14)

and
lim sup (1, A1) (z,£) — (Y, Aa)(a,0)] s @ € Q)] = 0. (5.15)

Proof. Let ¢ = ¢y — ¢y and A = A; — A,, and define v = (¢, A). Then
limieo u(a(t),t) = 0 for j = 1,...,N. As shown in Lemma 5.2, u(t) € D(A)
for all t > 0 and

d
Ol + vl < Clla@ll:, >0, (5.16)

for some positive constants v and C'.

Taking any 7 > 0 and 6§ = 1 in the inequality (4.7), we obtain an estimate for
|u(¢)]|5, in terms of the quality of the coverage of Q by the sets £(¢) for ¢t > 7 and
the norm of u(¢) in H?,

2
()3 < C (Il 2l + dY u@lle)” < C (lule e + dY|ut)]3:)

< el + Cle) (ulp, + & u(l3e) .t 27,

for any ¢ > 0. (The quantities |u|e, and d; are defined after the estimate (4.7).)
Fixing ¢ in the interval (0,/C), we absorb the term eC/||u(t)||5,2 in the left member
of the differential inequality (5.16). Thus we find that, for any 7 > 0, there exist a
> 0 and a positive constant ' such that

d
S5 + pllu®le < € (lulz, + &/} 52 ), t> .
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Given this constant €', we fix §; < (u/C)?, so u — Caﬂ/2 > 0 for all d- < 4;. Then
d
el + (o= C87) [ut)}e < Clulz . 1>,

whenever d, < ¢;. A similar inequality holds with |lu(¢)|72 in the left member
replaced by |lu(t)||3,, because of the continuous imbedding of H? into H'. Thus,
whenever the coverage of € by the point sets £(¢), t > 7, is uniformly better than
d1 (that is, whenever do(&(t)) < &; for all t > 1), there exist a A > 0 and a positive
constant ' such that

d
@l + M@l < Clule,, >

Given any small positive ¢, we fix 7 = 7() such that Clulz , < e. Such a choice is
certainly possible, because lim;_,o u(x;(¢),t) = 0for j = 1,... , N. Having thus fixed
7, we find that ||u(t)||7, satisfies the differential inequality

d
GOl + Alle@llze <&, t>m.
Then Gronwall’s lemma yields the estimate
lu()Fn < (/2) + e ful(r)|3n, >

Since ¢ is arbitrarily small, we conclude that lim,_., u(¢) = 0 in the topology of H'.
Convergence in the uniform topology on  follows from the fact that the orbit of
any initial value in D(A1+9)/2) has compact closure in H'** and H'T is compactly
imbedded in the space of continuous functions C(Q) if a > 1. I

5.3 Asymptotically Autonomous Case

If the applied magnetic field is constant or asymptotically stationary in time, we
can be more specific about the long-time asymptotic behavior of the solution of the
gauged TDGL equations. Since a constant field is a special case of an asymptotically
stationary field, we discuss only the latter. Instead of (5.8), we impose the stronger
hypotheses

H < L>(]0,0); [Ha/(ﬂ)]”) for some o' € (a,1),0 € (1,1), (5.17)
O:H € [L'(0, 00; [L*()]™) N [L*(0, 00; [L*()]™). (5.18)
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Then H is asymptotically stationary, and limi. H(t) = H., in [H*(Q)]". The
dynamical process U defined on D(A!+*)/2) by the initial-value problem (3.20) is
asymptotically autonomous; its large-time asymptotic limit is the dynamical system

S. defined on D(AU+)/2) by Eq. (3.31).

Lemma 5.3 Let (¢, A) be a solution of the gauged TDGL equations, such that u =
(v, A — An) satisfies Fq. (3.20). For every fixred s (s > 0), there exist positive

constants v and C such that
d
g lle(t) —ult+ )15 + vllu(t) —ult +s)llf. < C (HU(t) —u(t + 5|30

HH(t) — H(t+ 8)||5a + ||0:H(t) — 0:H(t + S)Hiz) , 1>0. (5.19)

Proof. Fix s > 0 and define the function v on [0,00) by the expression v(t) =
u(t) —u(t+s) fort > 0. Let ¢, (t) = (t) —(t+s) and A,(t) = A(t) — A(t + s), so
v = (¥, A,). Then v(t) € D(A) for all t > 0. A straightforward calculation shows

that v satisfies the linear differential equation

i—: + Av = F(t,u(t)) — F(t + s,u(t +s)) = Bi(¥(1), A(t);0(t + 5), At + 5)) v

+B2((1), A(t); (1 + 5), A(t + 5))(An(l) — Au(t + 5))
where B; has the same structure as B in the preceding section (cf. Eq. (5.11)),

Bl(¢17 Al; 77Z)27 AQ) v = (%¢v7 0)

b (21 (V004 (T A+ L 0 [T A+ (V- A,

(Vs = (Vo) + ¥V, — ,767])

[N

- (% AP0y + 02(As + As) - Ay + ([0 + [0 + rhatsy]
A (0T, + a00) + 12 PAL) (5.21)

and

Ba(ibr, A o, A2)(An(t) — An(t +5)) = - (%wz (An(t) - Ault + s>>,o)

IR
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- (%@/}2(141 +Az) - (An(t) — An(t + 5)), [Vo*(An(t) — Au(t+ 3))) - (5.22)

If the applied magnetic field is constant, the right-hand side of Eq. (5.20) reduces to
the single term involving B;.

Choosing any ¢t > 0, we take the £? inner product of both sides of Eq. (5.20)
with Av,

1d
el + ol = (Brv, Av),
+ (Bo(Au(t) — Anlt +5)), Av) o + ((0, 0, Au(t) — D Au(t + ), Av) ., 1> 0.

(5.23)
The linear operator B; is continuous from H! into £2, just like B in the preceding
section, so
|(Brv, Av) | < Cllollallollae < ellollze + C(e)lvla,

for any ¢ > 0.

We claim that Bj is a bounded linear operator from [H'**(Q)]" into £*. The
claim is proved with the usual type of estimates; for example,

[(Vihs) - Amlle < |[Vallre | Amllze < Cllgallmal|Aulle < CllAmllmise.

The constant can be fixed independently of ¢, because of the compact closure of the
orbit in H'*t*. Hence, if we also use the fact that the mapping H(t) — Ag(l) is
continuous from [H*(Q)]" into [H'T*(Q)]", we find that

|(B2(An(l) — Au(t +5)), Av) | < Cf|Au(l) — Au(t + s)[giva]lv]le

< CIH(t) = H(t+ 5)||mellvlle < ellvllie + CEIHE) — H(t + 5)|[3a,

for any ¢ > 0.

Finally, we estimate the last term in (5.23). Here we use the fact that, under
the hypothesis (5.18), 0, H(t) € [L*(Q)]" for all t > 0. Then 0;Au(t) = Asup) €
[H'(Q)]" for all ¢ > 0, so it is certainly true that

(0, An(t) — D An(l + 5)), Av) o | < CllOH (1) — O H (L + 5))||2[|v][52

< ellvlle + CENOH (t) — O H (L + 5)| L2,
for any ¢ > 0.

The inequality (5.19) results if we fix each & in the interval (0, +) and absorb the
three terms ¢|[v]]32 in the left member of Eq. (5.23). 1§
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Assuming that the point sets £(), defined in Eq. (4.6), actually converge, in the

sense that there exists a point set £ ={¢ € Q:j=1,..., N} such that
tliglol']‘(t) :fj, j: 1, ,N, (524)

we will show that the limiting values of the solution of the gauged TDGL equations on
the point set £ define a unique solution of the gauged time-independent GL. equations
throughout the entire domain.

Theorem 5.3 Let (0, A) be a solution of the gauged TDGL equations such that
u = (,A— An) satisfies Fq. (3.20). Let {E(t) : t > 0} be a family of finite point
sets E(1) = {a;(t) € Q17 =1,... ,N} in Q, whose density do(E(t)) is defined in
FEq. (4.3), which converges in the sense of Fq. (5.24).

There exist a positive number §y and a unique solution (Yo, As) of the gauged

GL equations (2.10)~(2.12) such that, if limsup,_,__ do(E(1)) < &, and if
Jim (4, A)(w;(t), 1)) = (&5, F5), j=1,...,N. (5.25)
for some (6;, F;) € CxR", j=1,... N, then
Jim (4, A)(- 1) = (Yoo; Acc) (5.26)
in the topology of H' and in the topology of uniform convergence on . Moreover,

(Yoo, Acc) (&) = (95, F;), 7=1,...,N. (5.27)

Proof. The pointwise-convergence assumption (5.25), together with the limiting
condition (5.24), implies that

tliglou(l'j(t),t) = (qu,Fj—AH(fj)), ] == 1, ,N. (528)

Let s be fixed, s > 0, and let v be defined on [0, 00) by the identity v(t) = u(t + s) —
u(t), t > 0. Then lim;,o v(x;(t),t) =0for j =1,...,N. According to Lemma 5.3,
there exist positive constants v and C' such that

St + A0l < € (o0
() = H{t+ ) + [0H) - 0H@E+9)E:) . 1>0. (5.29)
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As in the proof of Theorem 5.2, we use the estimate (4.5) to relate ||v(¢)||3, to the
quality of the coverage of Q by the point sets £(¢) and the norm of v(¢) in H?. For
any 7 > 0, we have

le@) 30 < € (Iolello@) e + dlo(t)132)

<ello®3e + Cle) (Jof2, + &2 D3e) . t >,

for any ¢ > 0. (The quantities |v|e, and d; are defined after the estimate (4.7).)
Fixing ¢ in the interval (0,/C'), we absorb the term eC'||v(¢)||3,z in the left member
of the differential inequality (5.29). Thus we find that there exist a g > 0 and a
positive constant C' such that

d
Tl + pl@le < © (lolz.. + a2 o (0)][5

HIH (1) — H(t + 5)|3a + |0H (1) — 0 H(t +5)[32), > 0.

Given this constant ', we fix o < (u/C)?*, s0 p1— Cd'/? > 0 whenever d, < §,. Then,
if d, < &3, we find that there exists a constant ' such that

d
DI + (1 = C&) lo(1)]l5e < O (Jof2 -

HIH (1) — H(t+ 5)|3 + |0H (1) — 0 H(t +5)[32), > 7.

Because of the continuous imbedding of H? into H', we can replace the H?* norm of
v(t) in the left member by its H' norm. Thus, whenever the coverage of 2 by the
point sets E(t), t > 7, is uniformly better than ds, there exist a A > 0 and a positive
constant C' such that

d
@Ol + Al @l < © (lvlz.,

HIH (1) — H(t + 5)|[3a + |0H (1) — 0 H(t +5)[32), > 7.

Given any ¢ > 0, we fix 7 = 7(¢) such that each term in the right member is less
than %5. Such a choice is certainly possible because the condition (5.28) implies that
lim; o0 |v|e,» = 0, the condition (5.17) implies that lim;—.. || H (1) — H(t+ 5)|| g~ = 0,
and the condition (5.18) implies that lim;—.. ||0:H (1) — O:H (t + s)||12 = 0.

Having thus fixed 7, we find that ||v(t)||: satisfies the differential inequality

d
T Ol + Alo@l3e <2 t> 7.
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Applying Gronwall’s lemma and returning to the original function u, we conclude
that

lult) = ult + )3 < (/) + e u(r) —u(r + )3, >
Hence,
c
3

Since ¢ is arbitrarily small, we have shown that the values {u(¢) : t > 0} of u form
Cauchy sequence in H! as { — oo.

lim sup ||u(t) — u(t + S)H%{l <
t— 00

There exists therefore an element u., € H' such that

lim [Ju(t) — ool = 0.

The orbit of any uy € D(A!T/2) has compact closure in H'**. Since the injection
of H'* into C*~Y/2(Q) is compact, the family {u(¢) : ¢ > 0} is compact in C*~1/?(Q).
Hence, we also have

tli}r?o [sup{|u(z,t) — ueo(x)] : & € Q}] = 0.

The element u,, is associated with a pair (¢, A’ ) € [H*()]* x [H'()]", which
defines, in turn, a pair (¢, As) € [HY(Q)]* x [HY(Q)]",

This pair necessarily satisfies the time-independent GL equations (2.10)—(2.12). More-
over, because of (5.28), it must be the case that

(¢W7AW)(51):(¢]7F1)7 .]:177N

It remains to prove that (¢, As) is uniquely determined. But this fact is an im-
mediate consequence of Theorem 5.1; all we need to do is decrease 4, if necessary to
make sure that dy < dg. 11

Acknowledgments

The work of H. G. Kaper is supported by the Mathematical, Information, and Compu-
tational Sciences Division subprogram of the Office of Computational and Technology Re-
search, U.S. Department of Energy, under Contract W-31-109-Eng-38. The work of S. Wang
is partially supported by the Office of Naval Research under Grant NAVY-N00014-96-1-
0425, by the National Science Foundation under Grants NSF-DMS-9623071 and NSF-DMS-
9400615, and by the Research Fund of Indiana University.

26



References

1]

[10]

[11]

[12]

A.A. Abrikosov, “Fundamentals of the Theory of Metals,” North-Holland Publ.
Co., Amsterdam, 1988.

R.A. Adams, “Sobolev Spaces,” Academic Press, New York, 1975.

F. Bethuel and T. Riviere, Vortices for a variational problem related to supra-
conductivity, Ann. Inst. Henri Poincaré 12 (1995), 243-303.

P. DeGennes, “Superconductivity in Metals and Alloys,” Benjamin, New York,
1966.

J. Fleckinger—Pellé and H.G. Kaper, Gauges for the Ginzburg-Landau equations
of superconductivity, Proc. ICTAM 95. Z. Angew. Math. Mech. (1996), to appear.
Preprint ANL/MCS-P527-0795, Mathematics and Computer Science Division,
Argonne National Laboratory, October 1995.

J. Fleckinger—Pellé, H.G. Kaper, and P. Taka¢, Dynamics of the Ginzburg-
Landau equations of superconductivity, submitted for publication. Preprint
ANL/MCS-P565-0296, Mathematics and Computer Science Division, Argonne
National Laboratory, February 1996.

C. Foias and 1. Kukavica, Determining nodes for the Kuramoto-Sivashinsky equa-

tion, J. Dynam. Diff. Eq. 7 (1995), 365-373.

C. Foias and R. Temam, Determination of the solutions of the Navier-Stokes
equations by a set of nodal values, Math. Comp. 43 (1984), 117-133.

V. Georgescu, Some boundary value problems for differential forms on compact

Riemannian manifolds, Ann. Mat. Pura Appl. (4) 122 (1979), 159-198.

V.L. Ginzburg and L.D. Landau, On the theory of superconductivity, Zh. Eksp.
Teor. Fiz. (USSR) 20 (1950), 1064-1082; Engl. transl. in D. ter Haar, “L.D. Lan-
dau; Men of Physics,” Vol. I, Pergamon Press, Oxford, 1965, 138-167.

V. Girault and P.-A. Raviart, “Finite Element Methods for Navier-Stokes Equa-
tions,” Springer-Verlag, New York, 1986.

L.P. Gor’kov and G.M. Eliashberg, Generalizations of the Ginzburg-Landau
equations for non-stationary problems in the case of alloys with paramagnetic im-
purities, Zh. Eksp. Teor. Fiz. 54 (1968), 612-626; Soviet Phys. JETP 27 (1968),
328-334.

27



[13]

[14]

[15]

[16]

[18]

[19]

[20]

[21]

[22]

D. Henry, “Geometric Theory of Semilinear Parabolic Equations,” Lecture Notes

in Mathematics, Vol. 840, Springer-Verlag, New York, 1981.

R.L. Jerrard, Lower bounds for generalized Ginzburg-Landau functionals,
preprint, Dept. of Mathematics, University of Illinois at Urbana/Champaign,
June 24, 1997.

D.A. Jones and E.S. Titi, Upper bounds on the number of determining modes,
nodes, and volume elements for the Navier-Stokes equations, Indiana Univ.

Math. J. 42 (1993), 875-887.

H.G. Kaper and P. Takac¢, FEquivalence relation for the Ginzburg-Landau
equations of superconductivity, 7. Angew. Math. Phys., to appear. Preprint
ANL/MCS-P588-0496, Mathematics and Computer Science Division, Argonne
National Laboratory, April 1996.

H.G. Kaper and P. Taka¢, Ginzburg-Landau dynamics with a time-dependent
magnetic field, submitted for publication. Preprint ANL/MCS-P620-1196, Math-
ematics and Computer Science Division, Argonne National Laboratory, Novem-

ber 1996.

I. Kukavica, On the number of determining nodes for the Ginzburg-Landau equa-

tion, Nonlinearity 5 (1992), 997-1006.

A. Schmid, A time dependent Ginzburg-Landau equation and its application to
the problem of resistivity in the mixed state, Phys. Kondens. Mater. 5 (1966),
302-317.

F. Takens, Detecting strange attractors in turbulence. In: D.A. Raud and L.-
S. Young (eds.), Lecture Notes in Math., Vol. 898, Springer-Verlag, New York,
pp. 366—381.

Q. Tang and S. Wang, Time dependent Ginzburg-Landau equations of supercon-
ductivity, Physica D 88 (1995), 139-166.

M. Tinkham, “Introduction to Superconductivity,” 2nd ed., McGraw-Hill, Inc.,
New York, 1996.

28



